Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Qual Health Res ; : 10497323221146459, 2023 Jun 06.
Article in English | MEDLINE | ID: covidwho-20238719

ABSTRACT

The present study aimed to know and analyze the repercussions and legacy of the COVID-19 pandemic for the Unified Health System from the perspective of health managers working in Manaus, a city considered the epicenter of the pandemic in Brazil. This qualitative research was designed as the study of a single incorporated case and conducted with 23 Health Care Network managers. The analysis was applied in two thematic coding cycles (values and focused coding methods), with the aid of the ATLAS.ti software. The categories we analyzed covered the lessons learned within the scope of the work process, change in stance, and human values, as well as the coping strategies adopted by individual or team initiatives or by the incorporation of innovations in practices. This study highlighted the importance of strengthening primary health care; of promoting team spirit in the service and establishing partnerships with public and private institutions, of being integrated with the training in complex situations, and of reflecting on human values and appreciation of life. Coping with the pandemic promoted an in-depth reflection about the functioning of the Unified Health System and the individual ways of being.

2.
Front Microbiol ; 13: 844283, 2022.
Article in English | MEDLINE | ID: covidwho-1952412

ABSTRACT

The severity, disabilities, and lethality caused by the coronavirus 2019 (COVID-19) disease have dumbfounded the entire world on an unprecedented scale. The multifactorial aspect of the infection has generated interest in understanding the clinical history of COVID-19, particularly the classification of severity and early prediction on prognosis. Metabolomics is a powerful tool for identifying metabolite signatures when profiling parasitic, metabolic, and microbial diseases. This study undertook a metabolomic approach to identify potential metabolic signatures to discriminate severe COVID-19 from non-severe COVID-19. The secondary aim was to determine whether the clinical and laboratory data from the severe and non-severe COVID-19 patients were compatible with the metabolomic findings. Metabolomic analysis of samples revealed that 43 metabolites from 9 classes indicated COVID-19 severity: 29 metabolites for non-severe and 14 metabolites for severe disease. The metabolites from porphyrin and purine pathways were significantly elevated in the severe disease group, suggesting that they could be potential prognostic biomarkers. Elevated levels of the cholesteryl ester CE (18:3) in non-severe patients matched the significantly different blood cholesterol components (total cholesterol and HDL, both p < 0.001) that were detected. Pathway analysis identified 8 metabolomic pathways associated with the 43 discriminating metabolites. Metabolomic pathway analysis revealed that COVID-19 affected glycerophospholipid and porphyrin metabolism but significantly affected the glycerophospholipid and linoleic acid metabolism pathways (p = 0.025 and p = 0.035, respectively). Our results indicate that these metabolomics-based markers could have prognostic and diagnostic potential when managing and understanding the evolution of COVID-19.

3.
Viruses ; 13(10)2021 09 25.
Article in English | MEDLINE | ID: covidwho-1438748

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the agent of coronavirus disease 2019 (COVID-19), is responsible for the worst pandemic of the 21st century. Like all human coronaviruses, SARS-CoV-2 originated in a wildlife reservoir, most likely from bats. As SARS-CoV-2 has spread across the globe in humans, it has spilled over to infect a variety of non-human animal species in domestic, farm, and zoo settings. Additionally, a broad range of species, including one neotropical monkey, have proven to be susceptible to experimental infection with SARS-CoV-2. Together, these findings raise the specter of establishment of novel enzootic cycles of SARS-CoV-2. To assess the potential exposure of free-living non-human primates to SARS-CoV-2, we sampled 60 neotropical monkeys living in proximity to Manaus and São José do Rio Preto, two hotspots for COVID-19 in Brazil. Our molecular and serological tests detected no evidence of SAR-CoV-2 infection among these populations. While this result is reassuring, sustained surveillance efforts of wildlife living in close association with human populations is warranted, given the stochastic nature of spillover events and the enormous implications of SARS-CoV-2 spillover for human health.


Subject(s)
COVID-19/epidemiology , Epidemiological Monitoring/veterinary , Primates/virology , Alouatta/virology , Animals , Animals, Wild/virology , Brazil/epidemiology , COVID-19/veterinary , Callicebus/virology , Callithrix/virology , Pandemics , SARS-CoV-2/pathogenicity , Viral Zoonoses/transmission
SELECTION OF CITATIONS
SEARCH DETAIL